
J .  Fluid Mech. (1980), vol. 99, part 3, pp .  656-672 

Printed in  Great Britain 

655 

Mean flows driven by weak eddies in rotating systems 
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General relations are derived for the forcing of a mean zonal flow in a damped rotating 
barotropic system through the action of weak eddies. In  particular it is found that 
if the eddies are forced a t  localized latitudes the induced motion away from these 
latitudes is likely to be counter to the rotation (i.e. ‘easterly’). Over the forcing 
latitude the mean motion is always westerly except when the forcing provides a sink 
of relative momentum. In the case when the background field is deformed topographic- 
ally to generate eddies the divergence of the Reynolds stress is balanced at lowest 
order by a dynamic pressure drag, and the mean motion t’akes the direction of propa- 
gation of the forcing. 

The relations are applied to a linearized Rossby wave field in a viscous fluid driven 
by a moving system of boundary sources and sinks or hills and hollows. The results 
are compared with laboratory experiments. All major predictions are confirmed 
qualitatively, but the discrepancies in detail indicate the influence of nonlinear effects 
other than those incorporated in the theory. 

1. Introduction 
There is abundant observational evidence (e.g. Oort & Rasmussen 1971; Newel1 

et al. 1972; Holopainen 1978; Blackmon et al. 1977) that t h e  synoptic-scale eddy 
components of the atmosphere’s motion play an important role in transporting hori- 
zontal momentum on both global and regional scales, usually with the effect of 
enhancing the zonal mean circulation a t  mid-latitudes. In the ocean similar effects 
on a smaller scale have been observed in relation to the Gulf Stream where the boundary 
eddies induce a westerly momentum convergence on the stream and a corresponding 
easterly flow beyond it (Webster 1965; Thompson 1977, 1978). 

The eddy contribution arises from Reynolds stress terms in the horizontal mean 
momentum equation, implying that in a rotationally dominated field the eddies 
acquire a structure or orientation which enables them to transfer momentum in a 
preferred direction, in many cases opposing the gradient of mean relative momentum. 

Although this counter-gradient property seemed a t  first remarkable enough to earn 
Starr’s (1968) evocative title of ‘negative viscosity’, it can be explained for quasi- 
geostrophic motions a t  least by simple consideration of the effects of eddy vorticity 
transport, and indeed offers a vindication of Taylor’s (1915) vorticity-diffusion 
hypothesis. Held (1975) and Rhines & Holland (1979) noted that growing eddy 
intensity and dissipation at constant intensity each imply a down-gradient flux of 

t Present address: CSIRO Division of Fisheries & Oceanography, Cronulla, N.S.W. 2230, 
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eddy potential vorticity and an easterly forcing of the mean zonal motion (q.v., 
equations (2.5) and (2 .7))  in regions when the eddies themselves are unforced. 
Momentum conservation then implies that  in the eddy-forcing regions, if localized, 
the induced zonal motion is westerly. Earlier, Thompson (1971) had noted that for 
barotropic Rossby waves the radiation of energy from a localized forcing region 
implies an oppositely directed flux of westerly momentum; hence if the Gulf Stream 
were a generator of oceanic eddies it could be intensified by their dispersion. 

These effects and general eddy diffusion properties have been discussed for a 
variety of cases by Rhines & Holland (1979). The predictions generally bear out the 
results of numerical experiments on barotropic and baroclinic systems (e.g. Lorenz 
1960; Hollingsworth 1975; Moura & Stone 1976; Simmons & Hoskins 1976). Global 
baroclinic models by Baines & Frederiksen ( 1  978) and Frederiksen ( 1979) indicate 
the action of the momentum-exchange process on a regional scale. 

I n  view of the evident importance of the topic, surprisingly little has been done in 
the laboratory on eddy-mean-flow interaction in rotating systems. Whitehead (1975) 
succeeded in producing a westerly zonal jet bounded by easterly jets by oscillating a 
small plunger in a large shallow rotating water tank. The localized nature of the 
forcing made the results unsuitable for detailed evaluation, and Colin de VerdiBre 
(1977, 1979) conducted another experiment with regular, zonally periodic forcing in 
a topographic polar beta-plane simulation. This latter experiment (in fact the pro- 
genitor of the source-sink experiments described here) enabled detailed comparisons 
to  be made with theory but unfortunately the location of the forcing region adjacent 
to  the circumference of the experimental vessel prevented the direct measurement of 
mean flows to this boundary and the presence of a westerly jet in this region could 
only be inferred. 

The present experiments were undertaken with these shortcomings in mind, and 
were intended to provide continuous, small-amplitude, localized forcing of a single 
zonal wavenumber with minimum turbulence. A topographic forcing method was 
attempted first, and was found to be incapable of generating significant westerly flow. 
This unexpected result led to a general examination of the problem (3  2) yielding an 
explanation and several useful results concerning frictionally damped planetary eddy 
motions. 

A second experimental method was tried in which forcing was provided by a means 
similar to  that used by Colin de VerdiBre, but with the forcing region separated from 
the container side walls. Within a range of forcing phase speeds, westerly jets could 
be induced over the forcing region, bounded on both sides by easterly flow. The results 
($4) are compared with theoretical predictions for a linear, locally forced Rossby 
wave (I  3) and quantitative agreement is obtained. The experiments reveal the strong 
influence of advection and Doppler shifting (discussed briefly in $ 3 )  in determining 
the character of rectified flows as their amplitude becomes large. 

2. Flow rectification by forced quasi-geostrophic eddies 
As a synthesis of the experiments described later we consider uniform fluid of depth 

h, in a rotating Cartesian frame (x eastward, y poleward) subjected to two different 
kinds of forcing which are approximately sinusoidal in the zonal direction x and 
localized in y; dissipation occuw through a viscous boundary layer. 
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The quasi-geostrophic potential vorticity equation is [cf. Stern 1975, equation 
(5.3.11)] 

Here f is background vorticity, 6 = v, - uy is relative vorticity, 6 is the net thickness 
of an Ekman layer on the bottom rigid boundary at  z = - ( I s , +  h ) ;  Wh is the normal 
surface velocity through this boundary if it is porous. Boundary slope and acceleration 
are assumed to be small and 1 Whl < O(f8). Primes denote quantities whose x and t 
averages are zero. The system is therefore forced both by periodic variations in depth 
and by boundary suction or ejection. 

Also defined are the linearized potential vorticity 

q = 5-f  hlho, (2.2) 

h = f d /ho  and w; = f Whlh,. Separated into zonally averaged and periodic parts, 6 
and q are rewritten: 

6 = C(Y> t )  + 5’@, y ,  t ) ,  

qy is equivalent to ‘/3’ in conventional notation. 
Taking the zonal average of (2.1) gives 

[;+A] g = - (v’q‘)v. 

Subtracting, and linearizing the result, 

q; + vlqv + uq; = - h5‘ - w;. (2.4) 

Now Ex is taken to be zero, so = - iiy and providing the disturbances vanish far 
away from the forcing latitude 

(;+A) 3 = (v”). 

- 
The zonal driving force per unit volume (w’q’) is expressible two ways. 

( 1 )  by diiect expansion, noting that 0, and (u’2), are zero, 

where the first right-hand term is mean Reynolds stress divergence and the second 
term gives the direct contribution of topographic forcing; 

(2) taking (2.4), multiplying by q‘ and averaging 

which then incorporates explicitly the contribution of boundary pumping. The two 
contributions will be considered separately. 
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2.1. Induced motions in unforced regions 

In  unforced regions where wh = h’ = 0, q’ = 5‘ and substitution of (2.7) into (2.5) gives 

A similar equation was derived by Rhines & Holland (1979). After a time t $ A-1 the 
flow becomes steady, with 

This has two important implications; firstly that a zonal mean motion is an intrinsic 
accompaniment to eddies in a real rotating fluid, and secondly that away from the 
forcing regions, the sign of the motion is necessarily opposite to that of the lateral 
gradient of potential vorticity. Note t h a t  (2.9) should not be taken to imply that 
ii -+ 03 as q , + O  since for h -+ 0, 

q’ -?l’qu, (2.10) 

where y‘ is the radial parcel displacement in the sense defined by Rhines (1977). 
Therefore (2.9) becomes - 

(2.11) 
- u N -qyT’? 

Rhines (1977) arrived at this result and noted that it differed from the corresponding 
inviscid result (obtained by setting h = 0 in (2.8) and integrating from a state of no 
motion a t  t = 0) by a factor of two. The correspondence, which may seem remarkable 
in view of the different balance of forces in the two cases, arises because of the similar 
effects of wave transience and dissipation on wave-mean flow interaction. This 
similarity, noted by Held (1975) among others, is exemplified by the  form of the wave 
driving term on the right-hand side of (2.8). 

Rhines argued that since ii in the unforced latitudes is easterly (for positive ijv) 
momentum conservation requires a westerly jet a t  the forcing latitude, unless the 
forcing provides momentum. This condition is satisfied by a source-sink forcing 
mechanism, but although Whitehead (1975) observed such a jet using a localized 
kind of topographic forcing it does not follow that the zonalIy distributed topographic 
forcing envisaged here would accomplish the same result, since the topography is 
capable of extracting momentum. This question is examined further below. 

2,2. Topographic forcing 
If the forcing is purely topographic, i.e. wh = 0, there is associated with the topography 
a pressure drag per unit area of 

- - 
(p’hk) = -(p:,h’) = - f (37) (2.12) 

since pk = fv’ for quasi-geostrophic flow. Thus the force per unit mass on overlying 
fluid is -f(v’h’)/h,. This is transmitted by a mean meridional circulation driven 
topographically (see McIntyre 1980 for a discussion). Although the Lagrangian mean 

- 
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vertical velocity of the boundary is zero there exists a non-zero mean vertical velocity 
in the plane z = 0, i.e. 

(2.13) 
D h - - - - -  
Dt 

E(0)  = - = (U’hk) + (v‘hi) = (v’h’)v. 

The associated vortex stretching acts to spin up the interior motion. 
Now from (2.7) with w; = 0 and for steady waves, i.e. ii(q’2)liit = 0,  

(v”) = -4g‘q‘)/?I,, 
which indicates that as h + 0 the forcing must vanish also. In terms of (2.6) this 
implies that as h -+ 0 the divergence of Reynolds stress and the topographic drag 
cancel exactly. This result accords with the ‘ non-acceleration ’ tborem as generalized 
by Andrews & McIntyre (1978); if the shape of the lower boundary remains constant 
although propagating in x, its Lagrangian mean vertical displacement is zero so 
according to that theorem there is no mean acceleration for steady conservative waves. 

2.3. Boundary pumping and non-topographic forcing 

When w; is non-zero (v’q’) and hence iit may remain finite as h + 0.  The lower boundary 
is no longer a material surface and the mean Lagrangian vertical velocity is not 
necessarily zero there. In a closed system mass conservation requires the Eulerian 
mean vertical velocity to be zero. However the vertical component of the Stokes drift 
Ws is non-zero but for small-amplitude waves (see Andrews & McIntyre 1978) 

- 

When h + 0 and motions are small, (2.4) can be written 

($ + ‘ii &) (9’ + r’ij,) = - w;, 

or. with the,substitution 

q’ + r’q, = - 2;. 

Equation (2.12) may then be written 

(2.14) 

(2.15) 

(2.16) 

since, from (2.15), (w;z;) = 0 for steady waves. Therefore if (wiq’) + 0 the Lagrangian- 
mean velocity EL = W+Es is non-zero at  the lower boundary. The conditions of the 
non-acceleration theorem are thus violated and ‘iit may remain finite as h --f 0. 

If h is non-zero (2.5) and (2.7) can be combined to give 

hu N - [(-) +A(=)]& 
for steady waves. 

Alternatively, with (2.6) and h’ = 0, 

- ho u N -- (v’u’)y = - (v‘u’) - 
h Y 8 f ’  

- 1 -  

(2.17) 

(2.18) 
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FIGURE 1. Mean-square vorticity, Reynolds stress and mean velocity profiles 
over an eddy-forcing region located between -yl and yl. 

where for a viscous laminar medium 8 = ( v / 2 f ) * .  This last expression effectively 
expresses the process as a balance between Reynolds stress-driven spin-up and Ekman 
layer spin-down. The momentum is the amount accumulated by the Reynolds stress 
in one spin-down time period. The result is directly useful, since it affords a simple 
means of verification from observational data (see 3 4 and figure 11). 

Beyond the forcing region (2.2), ( 2 . 6 )  and (2.7) give a general functional relationship 
between Reynolds stress divergence and mean-square vorticity : 

- hp = py(v’u’)l/. (2.19) 

- 
In the system considered pat is positive so (V’U’)~  is necessarily positive in the unforced 
regions (and U is necessarily negative). Furthermore if the forcing is localized to a 
region - y1 < y < y1 and the medium is effectively unbounded the eddy amplitude 
and ](v’u‘)I decay to  zero as IyI becomes large. Therefore within the forcing region the 
sign of ( V ‘ U ’ ) ~  must be reversed and there must exist a corresponding positive mean 
flow. Herein lies the essential difference between non-topographic and topographic 
forcing. With the latter there will also be a reversal in ( V ‘ U ’ ) ~  but it is counteracted by 
the topographic pressure drag. These features are illustrated in figure 1.  

- 
- 

- 
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FIGURE 2. Dispersion relation for a damped Rossby wave. -, l / k  without damping; 
- _ -  , I lk ,  p = 0.1 ; * * . . ., d/k, p = 0.1. 

3. Flows induced by Rossby-wave radiation 
The foregoing predictions are given further physical substance by consideration of 

a simple Rossby-wave field. Neglecting disturbance vorticity advection (2.1) becomes 

q; = -qyv'-Ap'-u,; .  (3 .1 )  

The motion is unbounded in y and forcing is confined within - y1 < y < yl. The distur- 
bance stream function is written 

7,b = Re [7,b(y) eik(x-Ct)], 

h' = h, Re [H cos Ly eik(*-ct)], 

wh = Re [ i  W cos Ly eik(s-ct)], 

[ 1 + ( ih/ck)]  [k-2P/~y2 - 11 $ - ( i j y / ~ k 2 )  $ = F cos Ly, 

(3 .2 )  

and forcing functions are represented by a half-sinusoid in the y direction: 

(3 .3)  

(3 .4 )  

where L = fryr'n. Substitution in (3 .1 )  gives 

(3.5) 

with F = f H / k 2  for pure topographic forcing and F = - W/ck3 for pure boundary 
pumping. 

In  the unforced regions F = 0 and an appropriate solution to ( 3 . 5 )  for y > y1 > 0 is 

3 .  I. Wave dispersion and average mean flow 

(3.6) 4 = AeiQ+idh 
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FIGURE 3. Profiles of mean zonal velocity over forcing region for topographic forcing 
(to the left of central axis) and source sink forcing (to the right). 
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FIQURE 4. Zonal jet strength showing dependence on phase-speed parameter y,  for topographic 
forcing. - , velocity on forcing axis, Z(y = 0) ; - - - , velocity at edge of forcing region, 
E ( y  = y,). For these results, k, L, f, p ,  and h, equal 1. Velocities are scaled by the square of 
maximum disturbance h'. 
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FIGURE 5. As for figure (4) but with source sink forcing. Velocities are scaled by the 
square of the maximum disturbance vertical velocity Wg. 

where 

and d = a/l, 
l2  = a[€ + (e2 + 4a2)*], (3.7) 

with a = +k2p(y2 +p2)-l, E = - k'(y' +p2+ 7) (7' +p')-l, 

and where y = ck2/?j, is the forcing phase-speed parameter, 

p = hk/?j, is the damping parameter. 

In  the inviscid limit (p N 0) these expressions reduce to the simple dispersion relation 
for Rossby waves, 

yielding real, radiating modes ( I  real) only while - 1 < y < 0. Ifp is non-zero (damping 
finite) I and d are non-singular and for p small, both intersect the y = 0 axis at  about 
(k2/2p)4. Figure 2 shows E/k and d / k  for p = 0 and p = 0.1. 

Substitution of (3.6) and (3.7) in (2.18) gives the terminal mean-flow profile beyond 

lo = I(p = 0) = k [  - (1 + y-l)]$ (3.8) 

the forcing region: 
U(y > yl) = - Sk4IA12~~l(y2+p2)--1e--2dy. (3.9) 
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FIGURE 6. New streamlines (disturbance plus induced mean flow) for condition of curve A, 
figure 3, with h, W/f = 0-24. Note the poleward displacement of cyclones, the equatorward 
displacement of antioyclonm, and the westward tilt of the eddy axeB. 

If the system imports no 2 momentum from the boundaries then the action of the 
Reynolds stress is to import momentum from the unforced latitudes, and the inte- 
grated momentum deficit over these defines the average jet strength over the forcing 
latitudes : - 

@} = A-’[v’u’]~~ yil 
= i l k /  A I e-zdyl yilh-l, (3.10) 

always positive, i.e. westerly. 

3.2. Jet structure for topographic and source-sink forcing 

A solution to (3.5) in - y1 < y < y1 which matches $and $u at the boundaries y = 
with (3.6) is 

C{cosLy + &L ei@+i@Y1(Z + id)-l cos ( I  + i d )  y} 
where 

C = FyY[y*(LZ - Z3)2 -I- ,u2(L* + k2)2]-* eie 

and 8 = arctan [ -&La + k2) (L* - Z;)-ly-l] 
withy,,u, I ,  d ,  Z,as definedby (3.7) etseq. and (3.8). Thenin termsofthe forcing constant 

A = iCL(l+ id)-’ cos (1 -+ id) y1 (3.12) 

yl 

(3.11) 

in the inviscid limit when ,u = 0, d = 0, 

C@ = 0) = l W ( E 2  - L2)-1. (3.13) 
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Substitutionin (2.9), (2.17), (2.18), (3.3) and (3.4) thenyields?i(y)profiles. Examples 
are given in figure 3. For these k, L, H,, f, a, and W are each unity andp = 0.1. Figures 
4 and 5 show the dependence of ii upon y both a t  the axis and a t  the edge of the 
forcing region, y = y1 = II/ZL, for p values of 10-3 and 10-1. 

As predicted the jet is invariably westerly when forced non-topographically and 
falls to low strength beyond the free Rossby-mode regime - I < y < 0. p exerts a 
strong effect and with weak damping the jet achieves maximum strength both near 
y = 0 and y = - 1. With topographic forcing the jet takes the direction of the forcing 
phase speed, and is strongest when this speed is near to the maximum for free Rossby 
modes, i.e. c = - q y / k 2 ;  p is influential only near to this maximum. 

The structure of the net disturbance motion can be appreciated from a sketch of 
the stream function, figure 6. Conditions are those of curve A of figure 3 and on the 
plot the eddy stream function (3.1 1)  has been combined with the resulting mean flow 
with a forcing velocity scale of 0.24. The mean westerly tilt implies a convergence of 
westerly momentum while the presence of the jet causes a poleward displacement of 
the cyclones and an equatonvard displacement of the anticyclones, with unconnected 
westerly jets between them. 

3.3. Finite-amplitude effects 

Apart from harmonic terms, the effects of finite eddy amplitude appear through the 
influence of induced mean motion on apparent eddy phase speed or forcing frequency. 
Inclusion of an advection term Tiqh in (3.1) changes c to c, = ( c - u ) ;  ij, becomes 
(av - up,) and h is also weakly modified. 

By inspection of the U(y) relation (figures 4 and 5 )  some general deductions can be 
made concerning the limits imposed by these effects when forcing is sufficiently strong. 
For example, if the forcing has a westward phase speed (i.e. c < 0) the presence of an 
easterly jet (as always occurs at the edge of the forcing region, and throughout it if 
forcing is topographic) reduces c, and the apparent y .  

For topographic forcing the strong peak in forcing efficiency a t  y = - 1 implies that 
for y < - 1 the jet will have a limiting maximum speed of ( c + q y k 2 ) ,  while for 
- 1 < y < 0 its speed will be somewhat less than c but in the same direction. For the 
easterly edge jets (however forced) the same effects apply, in addition to which the 
abrupt increase in d as y (apparent) increases through zero (see figure 2) causes con- 
ditions close to critical layer absorption by enhancing the absorption of eddy momen- 
tum when the jet is strongest and resulting in a strengthening and narrowing of these 
jets, and a weakening of eddy amplitude beyond them. 

A westerly jet, forced non-topographically by a strong westwards-travelling distur- 
bance will accelerate until c, falls below - ?ju/k2, and will thus be limited in strength 
to about i jy/k2 + c.? These limits are compared with experimental results on figures 8 
and 12. 

t Another implication is that if a westerly jet exists over the forcing region, it will be sustained 
even if c is subsequently reduced to zero, so that the forcing pattern is stationary. Experiments 
more recent than are reported here qualitatively confirm this prediction. 
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n . 

( b )  

FIGURE 7. Experimental configurations : (a) Topographic forcing ; (b)  source-sink forcing, show- 
ing one of the mean flow measuring rotors over the forcing region, as used for one result 
series. 

4. Experiments 
Experiments were conducted with two configurations. The first employed topogra- 

phic forcing in a cylindrical container. It was discovered that this was incapable of 
producing a significant westerly flow (see 4 2.2) and some time later the apparatus was 
rebuilt to provide source-sink forcing through a porous bottom. 

4.1. Topographic-forcing conjguration 

Reference is made to figure 7 (a).  A cylindrical vessel 214 mm radius and 172 mm 
depth was mounted on a laboratory turntable. The bottom was made of a 1-2 mm 
thick rubber membrane against which there pressed a t  a pitch radius of 127 mm a 
set of six tangentially facing rollers mounted on a frame. A rigid disk supported the 
centre of the membrane. The roller frame could be rotated in either direction to cause 
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FIGUEE 8. Measured radial structure of zonal mean flow, topographic forcing, 
y = 1.53; experimental conditions are given in text. 
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F~CURE 9. Topographic forcing : experimental and theoretical results compared. For conditions 
see text. Points are experimental Z(y) maxima. Solid line is the theoretical U ( y  = 0) neglecting 
Doppler corrections to forcing frequency. Broken line is the limit to Z for an inviscid medium, 
imposed by Doppler shift of forcing frequency (see $3.3). 

a wavelike bottom disturbance of about & 4 mm amplitude and zonal wavenumber 
six to move around the bottom. 

The vessel was filled to a depth of about 60 mm with thin silicone oil and the whole 
assembly was rotated axially causing the free surface to deform centrifugally to give 
qv > 0 with y measured radially inward. The motion of surface particles was observed 
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by a television camera mounted on the turntable. Mean velocities were derived from 
the time required for particles within a given annular sector to travel twenty degrees. 
The measurement was therefore quasi-Lagrangian, but further refinement of tech- 
nique was not considered worthwhile at the time. 

Quantitative results were taken in only one experimental sequence. For these, 
h, = 52mm,f= 9.72s-landh‘ = 4mm.HenceqJy = 0) = 0.057mrn-ls-l,H = 0.077, 
,U = 0.035. 

Figure 8 shows the radial structure for y = - 1.53. The mean flow is easterly every- 
where but is broader and much stronger than predicted theoretically, and exhibits 
much more pronounced weakening a t  its edges. These features and the suggestion of 
trimodality in the jet are consistent with a reduction in apparent phase speed as 
outlined in $3.3.  

Figure 9 compares observed jet maxima with theory (solid line) as a function of y. 
Also shown is the finite amplitude inviscid limit (broken line) defined in $ 3.3. 

The scatter in the data is unexplained, but may reflect the possibility of multiple 
values in terminal jet strength. Such as they are the results show a mean flow in the 
direction of forcing, a maximum strength comparable to the inviscid predicted maxi- 
mum and departing from the small-amplitude prediction in a manner consistent with 
first-order finite amplitude effects. 

A .  D .  McEwan, R. 0. R. Y .  Thompson and R. A .  Plumb 

4.2. Source-sink forcing conJiguration 

Referring to figure 7 ( a ) ,  the vessel was inverted and its bottom was perforated by 
36 equally spaced holes at  a radius of 142 mm. Each hole connected by nylon hydraulic 
tubing to a ‘ fluid commutator ’, a manifold containing a rotatable, ported centre-body. 
Fluid pumped to the commutator produced a cyclic flow through the tubes to create a 
pattern of sources and sinks on the tank bottom with an azimuthal wavenumber of 6. 
Rotation of the centre-body caused the pattern to move ‘east’ or ‘west’. A P.V.C. 

foam sheet lay over the bottom to diffuse the jets and flow was confined with an 
annulus 164 mm outer radius and 121 mm radius, by sealing the remainder of the 
foam surface with thick paint. 

The vessel was filled to about 60 mm depth with water and the motion of slightly 
buoyant polystyrene beads was photographed from above and observed by television 
camera. Results were obtained mainly by the laborious process of digitizing the co- 
ordinates of particle streaks within 60 degree sectors in the photograph sequences, 
and then computing U and (a) profiles. For one data set (appearing on figure 12) 
however, a pair of very light five-armed rotors was suspended in the water, free to 
turn about a vertical central axis, as shown sectioned in figure 7 ( b ) .  These rotors had 
blades 10 mm wide and lay a t  116 and 142 mm radius. With these, the approximate 
Eulerian mean azimuthal velocities could be measured directly from the television 
monitor. 

Figures 10 (a )  and 10 ( b )  (plates 1 and 2) show half-second time exposures of surface 
particle movement under eastward (y  = + 0.36) and westward ( y  = - 0.36) forcing 
conditions respectively. Background rotation is clockwise. For these tests f = 8.46 s-1, 
h, = 5-8 cm, P,(y = 0) = 0.38 cm-l s-l, and k = 0.42 cm-l. By direct measurement 
W&,,, = 0.2 cm s-l, and over the forcing region h 2: 0.115 s-l. With westward 
forcing the presence of a westerly jet is made evident by the relative inward radial 
displacement of the cyclones and outward displacement of the anticyclones (cf. 
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FIGURE 11. Mean velocity and Reynolds stress profiles, source-sink forcing, 
f = 9.74 s-1; h,(y = 0) = 7.4 cm 8-1; W&,, = 0.2 cm s-l, y = -0.37. 

figure 6).  An easterly boundary jet is more clearly discernible on the inside of the 
forcing region, and it will be noted that inside the jet the particle movements are very 
small, implying a strong absorption of the eddies by this jet (see $3.3) .  

With eastward forcing the eddies are somewhat weaker and more constant in radial 
position. The cyclones are discernably stronger than the anticyclones, implying the 
presence of a cyclonic shear over the forcing region. The inner boundary jet is still 
evident, but the eddy motion inside it is greater than in the westerly-forcing case. 

Using digitized co-ordinates of particle streaks within sixty degree sectors in 
photograph sequences, the Eulerian mean azimuthal velocity and mean-Reynolds- 
stress distribution were computed. Figure 11 gives the U and u‘v‘ for an experiment in 
which f = 9.74 s-l, ho(y = 0) = 7.4 cm, y = - 0-37, Worn,, = 0.2 cm s-l. A parabolic 
filter of 3 cm radial width has been applied to smooth the results. 

There is good qualitative correspondence between zeros and maxima in Ti  and 
( U ’ V ’ ) ~ ,  and if the values of (U’V’)~ a t  12.5, 14.8 and 19.5 cm are substituted in (2.18) 
with values of U maxima at 14.0 and 19.5 the value of h so given is between 0.08 s-l 
and 0.10 s-1. This is in fair quantitative agreement with a h estimated at  between 
0.065 s-1 and 0-09 s-l by direct measurement of the spin-down of eddies over the 
forcing region after forcing has ceased. 

Figure 12 shows the measured dependence of 5 at r = 14-25 cm (i.e. y = 0, over the 
forcing axis) and r = 11.6 cm (y = 2.65 cm, beyond the edge of the forcing region at 
2.15 cm) as a function of y for a fixed f = 8.46 s-l, h, = 5.76 cm and Worn,, = 0-2 cm s-l. 
The y = 0 results are from the sequence that included figures 9 and 10, and also from 
a separate sequence using the drift measuring rotor described above. 

- 

- - 
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FIGURE 12. Mean-flow dependence on forcing phase speed, source-sink forcing. For conditions 
see text. 0, U( - 0.5 < y < 0.5 cm) by photo analysis. 0 ,  'ii( - 0-5 < y < 0.5 cm) by rotor 
measurement. a, 'ii(y = 2.65 cm). - , linear theory. - - -, phase-speed limits. 

Although their form is similar, the rotor measurements yield a lower 5, perhaps 
due to the interruption of the eddies by the rotor blades. The y = 2.65 cm results 
came from rotor measurements alone. Friction evidently prevented movement a t  
very low drift rates. Also presented (solid lines) are theoretical curves of u(y)  for 
y = 0 and y = 2.65 ern predicted using the equations of § 3.2, and the limits imposed 
by Doppler shift of the apparent phase speed as discussed in $3.3.  The theoretical 
curves have been normalized to give the same maximum ii (y = 0) as the photo 
results, and correspond to a W,,, of 0.12 ern s-1. 

The experimental results always lie within the Doppler limits, and on the axis a t  
least bear a crude similarity to the theory. It is evident however that Doppler- 
shifting alone is insufficient to explain the discrepancies (that effect being to shift the 
theoretical curves rightward an amount iik2q,). In particular the strong easterly 
boundary jet suggests important wave-momentum absorption effects not accom- 
modated in the present theory. Other effects likely to influence a quantitative com- 
parison are the bounded circular geometry and spatial non-uniformity in ij,, h, and A. 
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5. Conclusion 
The experiments have provided a useful confirmation of the major predictions of 

quasi-geostrophic theory for the eddy forcing of mean flows in the presence of a 
gradient of mean potential vorticity. In particular it is demonstrated that if the 
eddies are steadily forced at  a localized latitude, the forcing region will be bounded 
by easterly jets whose strength is determined by the viscous spin-down time scale 
and the divergence of eddy Reynolds stress. 

Within the forcing latitudes the character of the mean flow is dependent upon the 
nature of the forcing, and it is shown and experimentally verified that a topographic 
deformation of the vorticity field is ineffectual because to highest order the mean flow 
forcing is balanced completely by topographic drag; the mean flow then derives from 
the effect of viscous spin-down on the eddies, and takes the direction of phase propa- 
gation of the disturbance. 

Non-topographic forcing can generate intense westerly jets whose strength can 
approach the phase-speed of the eddies forcing them; the kinematical effect is a pole- 
ward displacement of the cyclones and an equatorward displacement of the anti- 
cyclones. For any generation process which does not impart mean momentum to the 
flow, the jet over the forcing region is always westerly; for the present configuration 
its strength and the strength of the bounding easterly jets falls abruptly as the forcing 
phase speed c passes beyond the range - 0.1 < ck2/ij,  < 0 for inviscid free barotropic 
modes. 

Although qualitativeIy in agreement, the detailed correspondence between the 
experiments and the linear theory presented in § 3 leaves a lot to be desired. Insofar 
as the induced flows were comparable in strength to the phase-speed of the forcing 
disturbances, and their vorticities and vorticity gradients were of similar magnitude 
to the background, it is likely that Doppler-shifting and other nonlinear effects would 
be appreciable. In particular the inordinate strength of the easterly boundary jet 
with source-sink forcing (figure 12) reveals the likely occurrence of enhanced absorp- 
tion of the eddies by the induced mean flow in regions where the Doppler-shifted phase 
speed is reduced. 

The assistance of Terry Long (Monash University) and George Scott is gratefully 
acknowledged. The topographic forcing experiments were done in the Geophysical 
Fluid Dynamics Laboratory at  Monash University. 
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FIGURE 10. Movement of surface particles. Half-second exposures, clockwise background rota- 
tion;f = 8.46 5-1, FY,, = 5.8 cm, ij(y = 0) = 0.38 cm-l s-l, k(y = 0) = 0.42 s-l, WmaX = 0.2 cm 
6-1. (a) Eastward forcing, y = 0-36. (6)  Westward forcing y = - 0.36. 
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FIGURE lo@).  For legend see plate 1 

Plate 2 
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